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Gut Microbiome Wellness Index 2 enhances
health status prediction from gut
microbiome taxonomic profiles

Daniel Chang 1,13, Vinod K. Gupta2,13, Benjamin Hur2, Sergio Cobo-López3,
Kevin Y. Cunningham4, Nam Soo Han5, Insuk Lee 6, Vanessa L. Kronzer 7,
Levi M. Teigen 8, Lioudmila V. Karnatovskaia9, Erin E. Longbrake10,
John M. Davis III7, Heidi Nelson11 & Jaeyun Sung 2,7,12

Recent advancements in translational gut microbiome research have revealed
its crucial role in shaping predictive healthcare applications. Herein, we
introduce the Gut Microbiome Wellness Index 2 (GMWI2), an enhanced ver-
sion of our original GMWI prototype, designed as a standardized disease-
agnostic health status indicator based on gut microbiome taxonomic profiles.
Our analysis involves pooling existing 8069 stool shotgunmetagenomes from
54 published studies across a global demographic landscape (spanning 26
countries and six continents) to identify gut taxonomic signals linked to dis-
ease presence or absence. GMWI2 achieves a cross-validation balanced accu-
racy of 80% in distinguishing healthy (no disease) from non-healthy (diseased)
individuals and surpasses 90% accuracy for samples with higher confidence
(i.e., outside the “reject option”). This performance exceeds that of the original
GMWI model and traditional species-level α-diversity indices, indicating a
more robust gut microbiome signature for differentiating between healthy
and non-healthy phenotypes acrossmultiple diseases. When assessed through
inter-study validation and external validation cohorts, GMWI2 maintains an
average accuracy of nearly 75%. Furthermore, by reevaluating previously
published datasets, GMWI2 offers new insights into the effects of diet, anti-
biotic exposure, and fecal microbiota transplantation on gut health. Available
as an open-source command-line tool, GMWI2 represents a timely, pivotal
resource for evaluating health using an individual’s unique gut microbial
composition.

Recent landmark studies have unveiled profound links between the
gut microbiome and a variety of complex, chronic diseases1–9. Despite
these discoveries, how can we tell if a person has dysbiosis? How can
we effectively harness unique microbial signatures to quantitatively
track our health? These critical questions stand at the forefront of
utilizing the gut microbiome as a precise marker for health and
wellness.

The potential of the gut microbiome as a marker for deciphering
complex, chronic diseases has captivated the scientific community—in
response, we recently developed the Gut Microbiome Wellness Index
(GMWI) [previously called theGutMicrobiomeHealth Index (GMHI)]10.
GMWI is a first-of-its-kind stool metagenome-based indicator for
assessing health by determining the likelihood of an individual har-
boring a clinically diagnosed disease solely from their gut microbiome
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composition, irrespective of the specific disease type10,11. This disease-
agnostic index was derived from a comprehensive analysis of a pooled
dataset comprising 4347 stool shotgun metagenomes from 34 inde-
pendent studies. GMWI is a logarithmic ratio of the collective abun-
dances—a term encompassing species-level relative abundances and
multiple α-diversity metrics—of health- and disease-associated gut
microbial species. Evaluating on the pooled dataset, GMWI exhibited a
balanced accuracy (i.e., average of the proportions of healthy and non-
healthy samples that were correctly classified) of 69.7% in predicting
the presence of clinically diagnosed disease. Specifically, the correct
classification rates for healthy (disease-free) individuals and thosewith
non-healthy (diseased) conditions were 75.6% and 63.8%, respectively.
Moreover, GMWI achieved a balanced accuracy of 73.7% in a validation
cohort of 679 stool metagenomes, with the correct classification rates
for the healthy and non-healthy subsets being 77.1% (91 out of 118) and
70.2% (394 out of 561), respectively. Since its original publication in
2020, GMWI has been utilized in studies investigating the impact of
environmental12 and genetic/socioeconomic13 factors on the human
gut microbiome, as well as in identifying a ‘Longevous Gut Microbiota
Signature’ species set13.

Despite the promise of our original GMWI prototype, there are
limitations that impede its general applicability. Firstly, GMWI cor-
rectly classifies healthy stool metagenomes at a higher success rate
than non-healthy ones. This bias may stem from the prevalence-based
strategy used to identify health-associated and disease-associated
species, which was a fundamental component of the GMWI model. As
the non-healthy group encompasses patients with different diseases,
this group is inherently heterogeneous; in turn, a prevalence-based
strategy may miss subtle taxonomic signatures that are only repre-
sented in subsets of non-healthy populations (e.g., cohorts with a
specific disease). Secondly, our existing model assigns equal weight to
each species without considering potential variances in the impor-
tance of individual species. To improve classification accuracy and
general applicability, a refined weighting system that accounts for
varying strengths of association to host phenotype is needed. Addi-
tionally, including gut microbial information from all taxonomic ranks
could uncover more features that accurately predict host
phenotypes14,15. In this study,wepresent GMWI2, an advanced iteration
of the original GMWI that addresses the above limitations and sig-
nificantly improves classification accuracy in distinguishing between
healthy and non-healthy phenotypes.

Results
Pooled analysis of stoolmetagenomes across health and disease
phenotypes
As inourpreviouswork10, wedefine “healthy” subjects as thosewithout
reported diseases or abnormal body weight conditions (i.e., classified
as underweight, overweight, or obese based on reported BMI),
whereas “non-healthy” subjects are those confirmed to have a clinical
diagnosis of any disease. (Retaining the same definitions for “healthy”
and “non-healthy” ensures that the current work represents a con-
tinuous refinement of our original GMWI method.) We conducted a
pooled analysis of existing 8069 stool shotgun metagenomes (5547
from healthy individuals and 2522 from non-healthy individuals)
sourced from 54 independently published studies spanning 26 coun-
tries and six continents (Fig. 1a, Table 1, and Supplementary Data 1).
These pooled metagenomes are from individuals with one of twelve
different health and disease phenotypes (Fig. 1a; healthy, ankylosing
spondylitis, atherosclerotic cardiovascular disease, colorectal cancer,
Crohn’s disease, Graves’ disease, liver cirrhosis, multiple sclerosis,
nonalcoholic fatty liver disease (or also known as metabolic
dysfunction-associated steatotic liver disease [MASLD]), rheumatoid
arthritis, type 2 diabetes, and ulcerative colitis) from diverse geo-
graphies, ethnicities/races, cultures, and balanced sex representation
(Fig. 1b). (Our study and sample selection criteria can be found in the

“Methods” section. We provide all subjects’ phenotype, age, sex, BMI,
and geography [as provided in their respective original study] in
Supplementary Data 2.) This substantial increase in sample size, nearly
doubling the number of metagenomes included in our previous study,
is one notable improvement in GMWI2. Additionally, GMWI2 uses
MetaPhlAn316 instead of MetaPhlAn217 for taxonomic profiling, lever-
aging an extensively expanded marker database for a more compre-
hensive and accurate characterization of microbial taxa (“Methods”
section).

All metagenomes underwent uniform reprocessing using an
identical bioinformatics pipeline, as described in the “Methods” sec-
tion. Such practice not onlymitigates batch effects18,19, but also bolsters
the identification of health- and disease-related gut taxonomic sig-
natures despite the presence of potentially strong confounding factors.
Indeed, this is supported by principal component analysis (PCA),
where, despite the samples originating from varying sources and
conditions, the healthy and non-healthy groups display significantly
distinct gut microbiome profiles (Adonis R2 = 1.2%, P =0.001, PERMA-
NOVA; Fig. 2a). Nevertheless, although the consensus preprocessing of
metagenomic data effectively reduces one source of batch effects
related to bioinformatics analyses, it is important to recognize that this
approach cannot entirely eliminate potential batch effects arising from
experimental and technical procedures across different studies. Such
factors include differences in how stool samples were collected, stored,
and prepared for metagenomic sequencing.

Implementing Lasso-penalized logistic regression in GMWI2
For the classification task of distinguishing between healthy and non-
healthy groups, GMWI2 uses a Lasso-penalized logistic regression
model instead of the log-ratio equation utilized in the original GMWI.
Hence, GMWI2 essentially uses linear regression for its predictions,
resembling polygenetic risk score models in statistical genetics20,21.
Themodelwas trainedongutmicrobiome taxonomic profiles (derived
from the aforementioned pooled dataset of 8069 stool shotgun
metagenomes) spanning all measurable taxonomic ranks to model
disease likelihood as a linear function of microbial taxon (i.e., clade)
presence or absence. Specifically, the GMWI2 score for an individual
sample is defined as the predicted log odds (logit) of the sample ori-
ginating from a healthy, non-diseased individual. A more compre-
hensive explanation of how GMWI2 uses Lasso-penalized logistic
regression to estimate disease likelihood is detailed in “Methods”
section.

The original GMWI approach utilized a prevalence-based strategy
to identify health- and disease-associated microbial species. Our cur-
rent method learns variable feature importances, obviating the need
for manual species identification. More specifically, the Lasso-
penalized logistic regression model utilized 95 microbial taxa with
non-zero coefficients for its predictions, derived directly from the gut
microbiome profiles (Fig. 2b and Supplementary Data 3). Interestingly,
themajority of taxa characterized by positive and negative coefficients
exhibited a higher relative abundance in the healthy and non-healthy
groups, respectively (Supplementary Data 4). These identified taxa
included 1 class, 3 orders, 4 families, 19 genera, and 68 species. Nota-
bly, the coefficient values varied between –0.68 and 0.54, ensuring
that each taxon contributes differently to the GMWI2 score according
to its relative association strength. This presents a shift from our
previous GMWI log-ratio model where equal weight was assigned to
each species.

It is worth mentioning that several taxonomic levels exhibited
non-zero coefficients in our analysis. This is likely due in part to the
interdependence across different levels of taxonomic hierarchy
introducing multicollinearity, which complicates the interpretation of
regression coefficients. However, our approach in encompassing all
taxonomic levels demonstrated higher classification performance
compared towhenusing only a single taxonomic level (Supplementary
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Fig. 1 | Conducting a pooled analysis of stool metagenomes across multiple
health and disease conditions from a diverse global representation. a A survey
was conducted in PubMed and Google Scholar to search for published studies with
publicly available human stool shotgun metagenome (gut microbiome) samples
from healthy (disease-free) and non-healthy (diseased) individuals. The initial col-
lection of stool metagenomes consisted of 12957 samples from 73 independent
studies. All raw metagenome samples (.fastq files) were downloaded and repro-
cessed uniformly using identical bioinformatics methods. After quality control of
sequenced reads, taxonomic profiling was performed using MetaPhlAn3. Studies

and samples were removed based on several exclusion criteria. Finally, a total of
8069 samples (5547 and 2522 metagenomes from healthy and non-healthy indivi-
duals, respectively) from 54 studies ranging across healthy and 11 non-healthy
phenotypes were assembled into a pooled metagenome dataset for downstream
analyses. b Demographic summary of the study subjects whose metagenome
sampleswere included in the pooled dataset. Subject demographics, as reported in
the original studies, include country of origin (n = 8069), age (n = 4670), and
sex (n = 5247).
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Table 1 | Human stool shotgun metagenome datasets used in this study

Author (Last name) Publication year Total from
study (n)

Healthy (n) Non-
healthy (n)

Disease (n)a Sequencing platform Geography
(Country)

Ananthakrishnan 2017 64 0 64 CD (24),
UC (40)

Illumina NextSeq 500 United States

Ang 2021 22 22 0 – Illumina NovaSeq 6000 United States

Asnicar 2021 568 568 0 – Illumina NovaSeq 6000 United Kingdom/Uni-
ted States

Backhed 2015 100 100 0 – Illumina HiSeq 2000 Denmark

Costea 2017 169 169 0 – Illumina HiSeq 2000 Germany/Kazakhstan

D’Souza 2021 128 128 0 – Illumina NextSeq 500 Netherlands

Davies 2020 44 0 44 T2D (44) Illumina HiSeq 2000 New Zealand

De Filippis 2019 99 99 0 – Illumina HiSeq 1500/Illumina Next-
Seq 500

Italy

Dhakan 2019 47 47 0 – Illumina NextSeq 500 India

Feng 2015 46 0 46 CRC (46) Illumina HiSeq 2000 Austria

Franzosa 2018 213 56 157 CD (84),
UC (73)

Illumina HiSeq 2000 Netherlands/United
States

Gu 2017 94 0 94 T2D (94) Illumina HiSeq 2500 China

Gupta 2020 49 0 49 RA (49) Illumina HiSeq 4000 United States

He 2017 86 40 46 CD (46) Illumina HiSeq 2000 China

Huttenhower; Lloyd-
Priceb

2012; 2017 507 507 0 – Illumina HiSeq 2000/Illumina Gen-
ome Analyzer II

United States

Jacobson 2021 82 82 0 – Illumina NovaSeq 6000 Burkina Faso

Jie 2017 322 108 214 ACVD (214) Illumina HiSeq 2000 China

Karlsson 2013 53 0 53 T2D (53) Illumina HiSeq 2000 Sweden

Kim 2021 61 61 0 – Illumina HiSeq 4000 South Korea

Le Chatelier 2013 88 88 0 – Illumina HiSeq 2000/Illumina Gen-
ome Analyzer II/Illumina Genome
Analyzer IIx

Denmark

Liu 2016 110 110 0 – Illumina HiSeq 4000 China/Mongolia

Lloyd-Price 2019 86 25 61 CD (39),
UC (22)

Illumina HiSeq 2000 United States

Lokmer 2019 37 37 0 – Illumina HiSeq 2000 Cameroon

Loomba 2017 86 0 86 NAFLD (86) Illumina HiSeq 2500 United States

Mehta 2018 301 301 0 – Illumina HiSeq 2000 United States

Nielsen 2014 159 82 77 CD (12),
UC (65)

Illumina HiSeq 2000/Illumina Gen-
ome Analyzer II/Illumina Genome
Analyzer IIx

Denmark/Spain

Obregon-Tito 2015 20 20 0 – Illumina HiSeq 2500 Peru/United States

Pasolli 2019 142 142 0 – Illumina HiSeq 2500 Ethiopia/Madagascar

Qi 2019 43 43 0 – Illumina HiSeq 2500 China

Qin 2012 369 183 186 T2D (186) Illumina Genome Analyzer II China

Qin 2014 287 135 152 LC (152) Illumina HiSeq 2000 China

Rettedal 2021 35 35 0 – Illumina HiSeq 2500 New Zealand

Roager 2019 50 50 0 – Illumina HiSeq 2000 Denmark

Schirmer 2016 385 385 0 – Illumina HiSeq 2000 Netherlands

Schirmer 2018 83 18 65 CD (39),
UC (26)

Illumina HiSeq 2000 United States

Smits 2017 38 38 0 – Illumina HiSeq 4000 Tanzania

Sun 2021 42 42 0 – Illumina HiSeq 4000 United States

Tett 2019 110 110 0 – Illumina HiSeq 2000/Illumina
HiSeq 2500

Tanzania/Ghana

Thomas 2019 160 61 99 CRC (99) Illumina HiSeq 2500 Italy/Japan

Ventura 2019 48 24 24 MS (24) Illumina HiSeq 4000 United States

Vogtmann 2016 81 30 51 CRC (51) Illumina HiSeq 2000 United States

Wen 2017 200 105 95 AS (95) Illumina HiSeq 2000 China

Weng 2019 79 15 64 CD (40),
UC (24)

Illumina HiSeq X Ten China

Wirbel 2019 55 33 22 CRC (22) Illumina HiSeq 4000 Germany

Xie 2016 130 130 0 – Illumina HiSeq 2000 United Kingdom
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Table 1). Given our primary objective of optimizing classification
accuracy, we chose to prioritize this aspect, leading us to set aside the
multicollinearity concern.

In the following sections, we evaluate GMWI2’s proficiency in
differentiating healthy from non-healthy individuals. This process can
be conceptually structured into four phases:
1. Model training: GMWI2 is trained and evaluated on the full

training dataset. This phase utilizes all 8069 samples for com-
puting the logistic regression coefficients (as depicted in Fig. 2b)
and determining GMWI2 scores.

2. Cross-validation: GMWI2 undergoes further evaluation through
cross-validation (CV) and inter-study validation (ISV) strategies. In
contrast to the initial phase, these strategies do not leverage all
8069 samples simultaneously for model training. As a result, the
models generated during this phase are intrinsically different
from those produced in thefirst phase. In linewith standard cross-
validation protocols, the training of the GMWI2 model, including
the computation of logistic regression coefficients, is confined
strictly to the training partition of each train-test split of the total
8069 samples.

3. Validation on external datasets: The GMWI2 model developed in
the first phase is applied to six external datasets to confirm its
discriminatory power on independent samples.

4. Demonstration on longitudinal datasets: The GMWI2 model from
the first phase is applied to four additional external datasets.
These evaluations focus on demonstrating GMWI2’s applicability
in longitudinal scenarios.

Enhanced classification of healthy and non-healthy gut micro-
biomes with GMWI2
GMWI2 scores were calculated for metagenomes by applying the
learned coefficients in computing the predicted log odds. A positive
GMWI2 value classifies the sample as healthy, indicating disease
absence; while a negative GMWI2 value classifies it as non-healthy,
denoting disease presence. A GMWI2 of 0 implies an equal weigh-
ted presence of positive coefficient taxa and negative coefficient taxa,
thereby classifying the sample as neither healthy nor non-healthy.
When evaluated on the training dataset (8069 samples), GMWI2
demonstrated a balanced accuracy of 79.9% (correct classification
rate in healthy: 79.2%, correct classification rate in non-healthy: 80.6%)

Table 1 (continued) | Human stool shotgun metagenome datasets used in this study

Author (Last name) Publication year Total from
study (n)

Healthy (n) Non-
healthy (n)

Disease (n)a Sequencing platform Geography
(Country)

Yachida 2019 217 0 217 CRC (217) Illumina HiSeq 2500 Japan

Yang 2020 180 88 92 CRC (92) Illumina HiSeq X Ten China

Yang 2021 194 97 97 CRC (97) Illumina NovaSeq 6000 China

Yassour 2018 42 42 0 – Illumina HiSeq 2500 Finland

Yu 2015 128 53 75 CRC (75) Illumina HiSeq 2000 China

Zeevi 2015 900 900 0 – Illumina HiSeq 2500/Illumina HiSeq
2500/Illumina MiSeq

Israel

Zeller 2014 135 45 90 CRC (90) Illumina HiSeq 2000 France/Germany

Zhang 2015 163 61 102 RA (102) Illumina HiSeq 2000 China

Zhu 2021 132 32 100 GD (100) Illumina HiSeq 4000 China
aACVD atherosclerotic cardiovascular disease, AS ankylosing spondylitis, CRC colorectal cancer, CD Crohn’s disease, GD Graves’ disease, LC liver cirrhosis, MS multiple sclerosis, NAFLD
nonalcoholic fatty liver disease, RA rheumatoid arthritis, T2D type 2 diabetes, UC ulcerative colitis.
bSamples combined from both phases of the Human Microbiome Project (HMP1 and HMP1-II).
Further details on individual studies and their metagenome samples can be found in Supplementary Data 1 and Supplementary Data 2.

Fig. 2 | Gut microbiome taxonomic profiles of healthy and non-healthy indi-
viduals inform a Lasso-penalized logistic regression classification model.
a Principal component analysis (PCA) of gut microbiome profiles. Significant dif-
ferences in distributions between healthy (disease-free) (blue, n = 5547) and non-
healthy (diseased) (red, n = 2522) groups were observed (P <0.05, PERMANOVA).

Ellipses represent 95% confidence regions. The loading vectors with the top 10
highest PC1 and PC2 magnitudes are shown. b Coefficient values for the Lasso-
penalized logistic regression model. The model includes 49 taxa with positive
coefficients, 3105 taxawith zero coefficients, and 46 taxawith negative coefficients.
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and a Cliff’s Delta (d) effect size of 0.75, significantly surpassing the
balanced accuracy and Cliff’s Delta reported by our original GMWI
model (71.8%, d =0.63) and traditional species-level α-diversity indices
(i.e., Shannon Index, Simpson Index, and richness) (Fig. 3a and Sup-
plementary Data 5). Our results indicate that GMWI2 differentiates
between healthy and non-healthy groups much more effectively than
GMWI, although both indices were strongly correlated (Pearson’s
r =0.81; Supplementary Fig. 1). Moreover, we found that the gut
microbiomes of healthy individuals exhibit significantly higher
GMWI2 scores compared to each of the eleven disease phenotypes
(Fig. 3b). Lastly, we observed weak correlations between GMWI2 and
clinical/demographic characteristics ( | Spearman’s ρ | < 0.3; Supple-
mentary Figs. 2a–g), such as age, BMI, fasting blood glucose, blood
cholesterol and triglycerides, indicating that these factors do not sig-
nificantly influence gut microbiome-based classification outcomes.

We subsequently explored whether higher (or more positive)
GMWI2 values could indicate enhanced confidence in categorizing
stool metagenomes as healthy. Conversely, we examined if lower (or
more negative) GMWI2 scores suggest an increased likelihood that a
sample could be classified as non-healthy. Indeed, we observed a
progressive increase in the proportion of healthy individuals among
metagenome samples with increasingly positive GMWI2 scores (Fig. 3c
and Supplementary Table 2). Similarly, increasingly negative GMWI2-
scores captured larger proportions of the non-healthy subjects.
Notably, the proportions of actual healthy and non-healthy samples
within the positive and negative bins of GMWI2, respectively, were
both higher compared to the same GMWI bins (refer to points in
Fig. 3c). This difference in sample distributions between the GMWI2
and GMWI bins underscores GMWI2’s improved capability to differ-
entiate between healthy and non-healthy samples.

Fig. 3 | Enhanced classification of healthy and non-healthy stoolmetagenomes
using Gut Microbiome Wellness Index 2 (GMWI2). a GMWI2 best stratifies
healthy (n = 5547) and non-healthy (n = 2522) groups compared to GMWI and α-
diversity indices (P-values from the two-sidedMann–WhitneyU test; d, Cliff’s Delta
effect size). Balanced accuracies on the training set are shown for GMWI2 and
GMWI. b The healthy group (blue, far left) exhibits significantly higher
GMWI2 scores than all 11 non-healthy phenotypes (P-values from the two-sided
Mann–Whitney U test). Non-healthy phenotypes include multiple sclerosis (MS,
n = 24), ankylosing spondylitis (AS, n = 95), rheumatoid arthritis (RA, n = 151),
ulcerative colitis (UC, n = 250), nonalcoholic fatty liver disease (NAFLD, n = 86),
type 2 diabetes (T2D, n = 377), Crohn’s disease (CD, n = 284), Graves’ disease (GD,
n = 100), colorectal cancer (CC, n = 789), liver cirrhosis (LC, n = 152), and athero-
sclerotic cardiovascular disease (ACVD, n = 214). cBins of GMWI2 and GMWI scores
(x-axis). The height of the black and gray bars indicate metagenome sample counts
in each GMWI2 and GMWI bin, respectively (y-axis, left). Points represent the

proportionof samples in eachGMWI2orGMWIbin corresponding to actual healthy
and non-healthy individuals (y-axis, right). d Increased magnitude cutoffs result in
improved classification performance of GMWI2, showing increasing training set
balanced accuracy (blue, y-axis, left) at the expense of decreasing retained samples
(orange, y-axis, right). e Classification performances of GMWI and GMWI2 in dis-
tinguishing healthy and non-healthy groups. Accuracies (y-axis, left) are depicted
forbothgroupson the training set, leave-one-out cross-validation (LOOCV), and 10-
fold CV, using varying magnitude cutoffs (0, 0.5, 1.0) of GMWI and GMWI2 scores.
Balanced accuracies are shown between the blue and pink bars, which represent
healthy and non-healthy groups, respectively. Orange points represent the pro-
portion of retained samples (y-axis, right) for the corresponding index magnitude
cutoff. For 10-fold CV, repeated random sub-sampling was performed ten times,
and the average results are displayed. Standard box-and-whisker plots (i.e., center
line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile
range; points, outliers) are used to depict groups of numerical data in (a, b).
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The results presented in Fig. 3c of our study revealed an inter-
esting trend. Specifically, when GMWI2 (and GMWI) scores exhibit a
more positive or negative value, there is a corresponding increase in
the proportion of actual healthy and non-healthy samples, respec-
tively. This trend suggests a potential increase in the confidence of
phenotype classification. In contrast, as these values near zero, our
confidence in accurately determining the presence or absence of a
disease decreases. To examine this point more closely, we next
investigated how setting a minimum GMWI2 threshold or cutoff
parameter could enhance classification accuracy for phenotype pre-
diction. We observed remarkable improvement in classification per-
formance when considering increasing cutoffs for the magnitude of
GMWI2 scores, thereby signifying higher prediction confidence in the
retained samples (Supplementary Table 3). For example, when
retaining samples with GMWI2 magnitudes equal to or higher than 0.5
(i.e., GMWI2 scores below –0.5 or above +0.5) and 1.0 (i.e.,
GMWI2 scores below –1.0 or above +1.0), we achieved balanced
accuracies of 85.8% and 91.0%, respectively (Fig. 3d). (these cutoffs are
examples to illustrate the concept of the GMWI2 magnitude cutoff.)
This approach, however, requires excluding samples with GMWI2
magnitudes below these cutoffs, leaving only 6364 (representing
78.9% of the total 8069 samples) and 4712 (58.4% of 8069) samples,
respectively. This highlights a significant trade-off: increasing the
cutoff improves accuracy but excludes potentially valuable samples
from the analysis.

An important observation is that GMWI2 correctly classified
healthy and non-healthy stool metagenomes at nearly the same rate
(79.2% and 80.6%, respectively) despite imbalanced sample numbers.
This contrasts markedly with the original GMWI, which achieved a
muchhigher correct classification rate onhealthy samples (Fig. 3e).We
also assessed the performance of the GMWI2 model utilizing both
leave-one-out cross-validation (LOOCV) and 10-fold cross-validation
(10-fold CV) (Fig. 3e). Interestingly, GMWI2 achieved nearly identical
balanced accuracies of 79.1% (healthy correct classification rate: 78.6%,
non-healthy correct classification rate: 79.5%) and 79.0% (healthy
correct classification rate: 78.6%, non-healthy correct classification
rate: 79.3%) in LOOCV and 10-fold CV, respectively, nearly matching
the performance achieved on the training dataset (79.9%).

Next, we computed classification accuracies using different
magnitude cutoffs for the two cross-validation methods (Fig. 3e).
Remarkably, GMWI2 achieved a balanced accuracy of 90.4% and 90.2%
in LOOCV and 10-fold CV, respectively, on the samples with scores
below –1.0or above +1.0. These balanced accuracies were very close to
those observed in the training set (91.0%). In contrast, when applying
the same criteria to GMWI (i.e., cutoff of 1.0), the balanced accuracy

drops considerably to 78.6%. In all, these results emphasize the notable
improvements achieved with GMWI2 over GMWI.

Evaluating the robustness ofGMWI2 across studypopulationsof
varying sample sizes
Although studies with small sample sizes were excluded from the
training set (see study exclusion criteria in Fig. 1a and “Methods” sec-
tion), in general, it is crucial to validate any classification model on
datasets of varying sample sizes19. To this end, we conducted inter-
study validation (ISV) to assess the impact of batch effects (i.e., tech-
nical or biological variations associated with the study population or
site characteristics) on GMWI2 performance stability. In this approach,
we iteratively excluded a single study, trained theGMWI2model on the
remaining studies, and evaluated its classification performance on the
held-out study22. (The excluded study essentially becomes the inde-
pendent validation [or test] cohort.) An important aspect of ISV is that
it can showcase the significant variability in classification performance
that can arise depending on the choice of validation set. For our study,
it provides a range of classification accuracies achievable when
applying GMWI2 across 54 independent validation sets.

Figure 4a specifically displays the performance of GMWI2 across
the full range of held-out studies, along with details on their sample
sizes. Despite the variation in classification performance across dif-
ferent studies (see gold points indicating ISV classification accuracy
per study in Fig. 4a and Supplementary Table 4), the average balanced
accuracywas 75.8%. This performance rose to 86.9%when considering
samples with GMWI2 scores lower than –1 or higher than 1 (Supple-
mentary Table 4). In all, our analysis revealed no discernible correla-
tion between the model’s predictive performance and the sample size
of the held-out datasets.

The classification performances obtained from ISV exhibited
minimal disparity compared to the performances achieved by LOOCV
and 10-fold CV, which do not consider study boundaries. The small
discrepancy between these strategies shows GMWI2’s resilience
against batch-related biases, indicating that GMWI2 generalizes
effectively across stool metagenomes, regardless of the subjects’ ori-
gins. Further evidence of this robustness is demonstrated by the area-
under-the-curve (AUC) metrics in the training set, 10-fold CV, and ISV,
achieving AUCs of 0.88, 0.87, and 0.84, respectively (Fig. 4b).

Demonstration of GMWI2 predictive capability on independent
sample sets
To confirm GMWI2’s predictive capability for distinguishing between
healthy and non-healthy individuals, we compiled an external valida-
tion dataset consisting of 1140 stool metagenome samples from six

Fig. 4 | Inter-study validation (ISV) shows effective generalization of GMWI2
across diverse study populations. a Classification accuracy on each excluded
study in ISV is displayed by gold points (y-axis, right). The studies on the x-axis are
rank-ordered based on either accuracy for a single phenotype (healthy or non-
healthy) or balanced accuracy in the case of both phenotypes. The stacked bars

illustrate the number of healthy (blue) and non-healthy (pink) stool metagenome
samples in each study (y-axis, left). b Receiver operating characteristic curves for
classification performance in distinguishing healthy and non-healthy phenotypes
on the training set, 10-fold CV, and ISV.
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published studies (Supplementary Data 6). This dataset includes
samples from healthy individuals and patients diagnosed with anky-
losing spondylitis, pancreatic cancer, or Parkinson’s disease. All
metagenome samples in this validation dataset (Supplementary
Data 7) were classified into either healthy or non-healthy groups in the
same manner as demonstrated above.

Consistent with our findings from the discovery cohort (or train-
ing data), GMWI2 scores from stool metagenomes of the healthy
validation group (n = 494) were significantly higher than those of the
non-healthy validation group (n = 646) (P = 1.6 × 10–43, two-sided
Mann–Whitney U test; Cliff’s Delta = 0.48; Fig. 5a). The balanced
accuracy achieved was 72.1%, which is comparable to the average
balanced accuracy of 75.8% observed in our ISV analysis. With magni-
tude cutoffs of 0.5 and 1.0, the balanced accuracy improved to 75.4%
and 80.1%, respectively, while still retaining 74.3% and 49.3% of the
samples.

To further examine GMWI2 performance on the external valida-
tion data, we analyzed the eight total cohorts (defined by unique
phenotype per study), spanning five healthy and three non-healthy
phenotypes. As shown in Fig. 5b, four of the five healthy cohorts
(H1–H4) were found to have significantly higher GMWI2 distributions
than all three non-healthy phenotype cohorts (P <0.01, two-sided
Mann–Whitney U test). Classification accuracies for the five healthy
cohorts were as follows: 96.3% (130 of 135) for H1, 91.2% (52 of 57) for
H2, 83.3% (25 of 30) for H3, 56.8% (21 of 37) for H4, and 28.1% (66 of 235)
for H5. Alternatively, classification accuracies for the three non-healthy
cohortswere90.7% (39of 43) for pancreatic cancer (PC5), 81.2% (398of
490) for Parkinson’s disease (PD6), and 80.5% (91 of 113) for ankylosing
spondylitis (AS4). Notably, GMWI2performedwell (81.2%) inpredicting
adverse health in Parkinson’s disease, although stool metagenomes
from patients with this neurodegenerative disorder were not part of
the original discovery set. Furthermore, despite the relatively poor
classification performance in the H5 cohort (28.1%), the GMWI2 scores
in H5 were significantly higher than those in the PC5 pancreatic cancer
group from the same study. Overall, the robust reproducibility of
GMWI2 on an external validation dataset suggests that a generalized
disease-associated signature of gut microbiome dysbiosis across

multiple diseases was effectively captured during dataset integration
and index formulation.

Gut health tracking in longitudinal studies
We applied GMWI2 to stoolmetagenomes obtained from four recently
published longitudinal gut microbiome studies. Importantly, these
sampleswere not part of the initial pool of 8069metagenomes used to
train GMWI2. Here, our aim was to illustrate GMWI2’s versatility by
demonstrating it towards gut microbiome health tracking, thereby
extending its applicability beyond the originally intended case vs.
control scenarios. Our index for quantitatively monitoring gut health
can be likened to using a cholesterol and glucose test for evaluating
cardiovascular and metabolic health over time.

Using data from the first study23, we analyzed stool metagenomes
from 22 individuals with irritable bowel syndrome (IBS) before and six
months after receiving fecal microbiota transplantation (FMT) from
two healthy donors. Among the participants, 14 reported symptom
relief after FMT (“Effect” group), while 8 did not experience symptom
relief (“No Effect” group) despite both groups demonstrating a sig-
nificant increase in species richness at six months following FMT
(P < 0.05, one-sided Wilcoxon signed-rank test; Supplementary Fig. 3).
However, only the individuals in the “Effect” group exhibited a sig-
nificant increase in GMWI2 (P <0.05; Fig. 6a and Supplementary
Table 5). Likewise, an increase in the species-level Shannon Index was
observed only in the “Effect” group (P < 0.05; Supplementary Fig. 4).
Overall, these findings suggest that while α-diversity metrics, such as
richness and Shannon diversity, may yield conflicting conclusions,
changes in GMWI2 could serve as a marker of subjects’ phenotypes
following FMT treatment for IBS. Furthermore, in light of the clinical
significance and the complexities involved in donor screening for
FMT24,25, computational tools such as GMWI2 (given its more nuanced
definition of gut health) may be able to help guide the selection of
suitable healthy donors and their stool samples.

In the second study26, we investigated the effects of diet. We cal-
culated GMWI2 for stool metagenomes obtained from 30 healthy
volunteers before and during a dietary intervention. Three groups of
participants were studied: Vegan (self-reported vegans who resumed

Fig. 5 | GMWI2 performance on healthy and non-healthy external validation
cohorts. a GMWI2 scores from healthy (494 samples) and non-healthy (646 sam-
ples) groups. Scores are significantly higher in the healthy group compared to the
non-healthy group (P = 1.6 × 10–43; two-sidedMann–WhitneyU test). The effect size
is represented byCliff’s Delta (d =0.48). The balanced accuracy of the classification
is 72.1%. b GMWI2 scores across five healthy (H1–H5) and three non-healthy cohorts
(AS4 ankylosing spondylitis, PD6 Parkinson’s disease, PC5 pancreatic cancer). The
superscript numbers adjacent to phenotype abbreviations correspond to specific

studies detailed in Supplementary Data 6. Asterisk (*) indicates significantly higher
score in a healthy cohort compared to the corresponding non-healthy cohort
(P <0.01, two-sided Mann–Whitney U test. Exact P-values provided in Supplemen-
tary Data 6). Numbers next to each asterisk refer to the healthy cohort compared
against each non-healthy condition. Sample size of each group or cohort are shown
in parentheses. Standard box-and-whisker plots (i.e., center line, median; box lim-
its, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers in
(a) or individual GMWI2 scores in (b)) are used to depict groups of numerical data.
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their regular diet), Omnivore (participants who consumed a standard
diet of both animal and plant origin), and Exclusive Enteral Nutrition
(EEN) (participantswith anomnivorous dietwhowent on to consume a
synthetic, fiber-free diet for the duration of the study). Stool samples
were collected at baseline and each day during the dietary interven-
tion. We observed that the GMWI2 scores for both the vegan and
omnivore subjects remained relatively stable throughout the inter-
vention period of five to six days (Fig. 6b). However, GMWI2 for the
EEN group significantly decreased relative to baseline by the second
day and onwards (P < 0.05, two-sided Wilcoxon signed-rank test;
Fig. 6b and Supplementary Table 6) while α-diversities did not sig-
nificantly change across the groups (Supplementary Fig. 5). These
results suggest that the removal of dietary fiber may lead to a rapid
decrease in overall gut health, an early change detected solely by

GMWI2 and not byα-diversitymetrics. Overall, our findings strengthen
the evidence for the well-established benefits of dietary fiber on
health27–29.

For the third study30, we calculated GMWI2 for stool metagen-
omes from twelve healthy young adults who underwent a 4-day
exposure with broad-spectrum antibiotics (meropenem, gentamicin,
and vancomycin). Here, stool samples were collected before the
exposure, and then again at 4, 8, 42, and 180 days post-intervention.
While species-levelα-diversitymeasures (Shannon Index and richness)
indicated that the gut microbiome may have recovered somewhat by
day 42or 180, GMWI2 did not demonstrate any recovery trend even by
day 180 (Fig. 6c and Supplementary Table 7). These findings reflect
deleterious post-intervention taxonomic shifts originally noted by
Palleja et al., such as the rise in previously undetectable Clostridium

Fig. 6 | Reanalysis of existing longitudinal gut microbiome studies
with GMWI2. a Changes in GMWI2 in patients with irritable bowel syndrome
observed six months (6-mo) after undergoing fecal microbiota transplantation.
Only subjects experiencing symptom relief (“Effect” group) displayed a significant
increase in GMWI2 (P =0.039, one-sided Wilcoxon signed-rank test). n, number of
FMT donor samples (17 total samples from two healthy donors) or number of FMT
recipients. b GMWI2 scores for dietary groups (EEN, Vegan, and Omnivore) at
baseline and at the first 5–6 days of dietary intervention. The EEN group showed
significant changes in GMWI2, with values significantly decreased by day 2 and
thereafter (P <0.05, two-sidedWilcoxon signed-rank test). No significant change in
GMWI2was observed for the Omnivore and Vegan groups compared to baseline. n,
number of unique individuals who each provided a stool sample per time point.
c GMWI2, Shannon Index, and species richness before and after antibiotic inter-
vention. Despite recovery in Shannon Index and species richness at day 42 and day
180, respectively, GMWI2 remained significantly lower compared to day 0,

suggesting incomplete gut microbiome recovery even after ~6 months (P <0.05,
two-sided Wilcoxon signed-rank test). n, number of unique individuals who each
provided a stool sample per time point. d GMWI2 of gut microbial communities
after 24-h in vitro fecal fermentation with five different prebiotic oligosaccharides.
The experiment was conducted in triplicates for each study group. The height of
the bars represents themeanGMWI2 (numbers inside the solid bars), and error bars
indicate the standard deviation from the mean. Points represent individual tripli-
cate samples. Different small letters above the bars denote groups with significant
differences in GMWI2 as determined by Tukey’s HSD test (P <0.05). Control
groups: NS0, no substrate addition at 0 h; NS24, no substrate for 24 h. Prebiotic
groups: FS24 fructooligosaccharide, IN24 inulin, GS24 galactooligosaccharide,
XS24 xylooligosaccharide, FL24 2’-fucosyllactose. Standard box-and-whisker plots
(i.e., center line, median; box limits, upper and lower quartiles; whiskers, 1.5×
interquartile range; points, individual GMWI2 scores or α-diversity values) are used
to depict groups of numerical data in (a–c).
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spp., and the disappearance of probiotic members of Bifidobacterium
and butyrate producers Coprococcus eutactus and Eubacterium ven-
triosum. Our results therefore offer a novel perspective on the long-
term impact of short-term broad-spectrum antibiotic intervention on
gut microbiota and suggest that GMWI2 could be a valuable tool for
assessing gut microbiome recovery following an acute illness.

In the final study31, we examined the effect of various oligo-
saccharides on gutmicrobial communities. In this study, Lee et al. used
GMWI to assess the prebiotic effect of oligosaccharides, with broader
implications for designing personalized diets based on their impact on
gut microbiome wellness. Herein, 19 healthy adult volunteers (14 men
and 5 women) provided fecal samples, whichwere then combined and
well-mixed. Then, fructooligosaccharides (FOS), galactooligosacchar-
ides (GOS), xylooligosaccharides (XOS), inulin (IN), and 2′-fuco-
syllactose (2FL) were separately mixed with portions of the
homogenized fecal samples in a 24-h in vitro anaerobic batch fecal
fermentation system. Two control groups were also included: one
without substrate addition at 0 h (NS0) and another without substrate
addition for 24 h (NS24). The experiment was conducted in triplicates
for each of the seven study groups.

GMWI2 was calculated for all fecal samples (Fig. 6d and Supple-
mentary Table 8), thereby replicating the original study with our new
index. Consistent with previous findings, the NS24 group exhibited a
lower average GMWI2 than the NS0 group, indicating a less healthy
and more disease-associated state. Notably, the addition of the three
prebiotics (FOS, IN, and GOS) resulted in significantly higher GMWI2
compared to NS0 (P <0.05, Tukey’s HSD test). Also, these same three
prebiotics, along with XOS, led to significantly higher GMWI2 relative
to NS24 (P <0.05). However, unlike the GMWI2 results, traditional α-
diversity metrics (Shannon Index, species richness, species evenness,
and inverse Simpson’s Index) were reported to have significantly lower
values in all prebiotic treatment groups compared to the NS0 group
(P < 0.05)31. Therefore, at least in the in vitro fermentation setting,
intake of these four prebiotics could potentially stimulate the growth
of gut microbial species associated with healthy conditions, an effect
observed solely by using GMWI2.

Discussion
Recent research into the human gut microbiome has highlighted its
potential to inform the development of innovative tools for predictive
healthcare32–37. In this regard, we introduce GMWI2, a robust predictor
of health status based on gut microbiome taxonomic profiles that
display significant technological advances compared to its prototype
(GMWI). Our extensive multi-study analysis, pooling 8069 stool shot-
gun metagenomes from 54 published studies, encompasses a diverse
range of demographics from 26 countries across six continents to
identify the biological signals linking gut taxonomies to human health.
Delivering a cross-validation balanced accuracy of approximately 90%
for higher confidence samples, GMWI2 establishes its strong reliability
as a classifier that distinguishes between healthy and non-healthy
phenotypes. Furthermore, by revisiting and reinterpreting data from
previously published datasets, GMWI2 can offer novel perspectives
even for the established understanding of the impact of dietary influ-
ences, antibiotic exposure, and FMT on the gut microbiome. Lastly,
this study highlights the importance of extensive data sharing in fos-
tering robust machine learning applications, and in demonstrating
resilience to batch effects and biases22,38–40.

In our analyses in which we incrementally increased the GMWI2
magnitude cutoff, we recognize an inverse relationship between classi-
fication accuracy and the volumeof samples eligible for class prediction.
Therefore, constraining this magnitude cutoff to a single value may not
be universally applicable; instead, the selection of this parameter should
be flexible and determined by the user, tailored to the specific context
and acceptable accuracy thresholds of their individual datasets. In other
words, users can select their desired GMWI2magnitude cutoff based on

their confidence level preference in the predictions. This user-driven
approach, which offers flexibility between high confidence in a limited
dataset and broader range predictions with lesser confidence, is a dis-
tinct advantage of our method over traditional binary-output machine
learning techniques. Moreover, our findings thus foster the potential
utility of a “reject option”41,42 for low GMWI2 magnitudes, which can
serve as a criterion to redirect relatively uncertain predictions to other
screening methods—this concept captures the understanding that cer-
tain aspects of health and disease are not fully explainable solely by the
gut microbiome.

Our study, while providing insights into the predictive capabilities
of the gut microbiome, has some limitations that need to be
acknowledged. First and foremost, we emphasize that GMWI2 scores
reflect an association with health status, which we define in terms of
the presence or absence of disease. It is important to understand that
these scores do not imply a causal relationship with (nor are they
intended to replace) direct clinical health measures, such as the
detection of pathogenic organisms in the gastrointestinal tract, gut
motility characteristics, metabolic profiles, serological markers, blood
inflammatory markers, or fecal calprotectin levels. Second, the model
couldbenefit fromthe inclusionofmore intricatemicrobiome features
such as species growth rates, strain details, and functional potential.
Incorporating these important factors may improve predictive accu-
racy and offer a richer perspective on the intricate mechanisms tying
the gut microbiome to overall human health. Third, we made con-
certed efforts to ensure that our pooled stool metagenomic dataset
exhibits a diverse representation of geographies, races, and cultures.
Nevertheless, future work should emphasize wider participant inclu-
sion, especially from underrepresented areas and ethnicities, to truly
globalize gut microbiome research. Additionally, loosening our
selection criteria will allow us to incorporate metagenomes from a
broader range of disease phenotypes (like neurodegenerative and
psychiatric disorders) and reach even more diverse demographics.
Such expansion could enhance the model’s generalizability across
different populations. Fourth, although we utilized taxonomic
information down to the species level, there’s a potential missed
opportunity in not focusing on microbial strains, which often bear
more clinical significance. While our method surpasses the genus-
level limitations of 16S rRNA gene amplicon sequencing, it doesn’t
account for the variability among strains of the same species. Fifth,
our analysis revealed that well-known pathogens, including Enter-
ococcus faecium/faecalis, did not display negative coefficients in our
GMWI2 framework. Nevertheless, we did observe negative coeffi-
cients for certain opportunistic pathogenic taxa, notably among
various Clostridium species, as detailed in Supplementary Data 4. It is
important to emphasize that the determination of pathogenic traits
is more accurately conducted at the strain level, which falls outside
the scope of our model. Additionally, it is widely acknowledged that
not every gut microbiome associated with chronic, non-
communicable diseases necessarily harbors invasive pathogens.
Sixth, we recognize that the compositional shifts between healthy
and non-healthy identified by our model might be influenced by
variables such as transit time, stool consistency, and other factors
not captured in our meta-data. This is a valid consideration for
individual samples. However, in our analysis of over 8000 meta-
genome samples, our assumption is that such variables are likely to
be evenly (randomly) distributed or have minimal impact on the
overall performance of the GMWI2 tool, given the breadth and rea-
sonable diversity inherent in our study’s sample population. Last, our
definitions of healthy (i.e., self-reported absence of a disease or
disease-related symptoms) and non-healthy (i.e., patients with a
clinical diagnosis of a disease) are consistent with those used in our
previous studies10,11, as the current work represents a continuous
refinement of our previous method. However, we have not investi-
gated how subtle variations in these definitions may impact GMWI2
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classification accuracy. Analyzing this aspect is a potential area for
future research.

In regard to its translational potential, GMWI2 is designed to offer
a novel method for dynamically monitoring an individual’s health in a
semi-real-time manner through the analysis of gut microbiome taxo-
nomic profiles. While our index is explicitly trained to distinguish
between healthy and diseased gut microbiomes, it also provides a
practical approach to approximating pre-diseased states. This is
achieved by interpolating between the healthy and diseased states,
allowing GMWI2 to reveal variations across the gutmicrobiome health
spectrum. Specifically, assuming sufficient prediction quality of our
model, an individual’s GMWI2 score will decrease as they transition
from healthy to pre-diseased to diseased states, or increase if transi-
tioning in the reverse direction. Moreover, GMWI2 provides a prag-
matic alternative to the resource-intensive collection of longitudinal
gut microbiome datasets needed to precisely track the steady transi-
tion from healthy to diseased. Current efforts in this area are very
limited in scale and costly.

In all, GMWI2 is not intended for confirming specific disease
diagnoses but rather serves as an early warning system, akin to a
“canary in a coal mine”. It is designed to detect potentially adverse
shifts in overall gut health before specific, diagnosable symptoms
occur. Suchdetectioncould informdietary or lifestylemodifications to
prevent mild issues from escalating into severe health conditions, or
prompt further diagnostic tests. Unlike existing disease-specific indi-
ces, our index spans multiple diseases, thereby emphasizing a pan-
disease (or alternatively, a generally healthy) gut microbiome sig-
nature. This broad applicability could be particularly useful in clinical
scenarios such as selecting FMT donors, where gut health could be
taken as a reflection of overall health. In conditions like rheumatoid
arthritis and other autoimmune inflammatory disorders, GMWI2 could
guide decisions on tapering or discontinuing therapy, or assessing the
possibility of disease flares. In this sense, GMWI2maypotentially usher
in a transformative era in gut microbiome-centric health analytics,
allowing for nuanced health evaluations tailored to individual micro-
bial signatures. Looking ahead, integrating GMWI2 into a larger deci-
sion network alongside other biomeasurements (e.g., multi-omics,
wearables) and AI models has the potential to open exciting possibi-
lities for healthy aging43 and preventative health screening and well-
ness programs44,45, driven by insights from the gut microbiome.

Methods
Multi-study pooling of human stool metagenomes
We conducted a comprehensive literature search using targeted key-
words such as “gut microbiome”, “stool metagenome”, and “whole-
genome shotgun” in PubMed and Google Scholar. The search was
performed up until January 2022 to identify published studies that
included publicly available shotgunmetagenomic data of human stool
samples, along with corresponding subject meta-data. In cases where
multiple samples were collected from individuals across different time
points, we included only the first or baseline sample from that study
subject. Studies involvingdietary ormedication interventionswerenot
included in the pooled dataset for GMWI2 training. Studies with fewer
than 40 samples were also excluded fromour analysis, considering the
potential limitations in the robustness and reliability of microbiome
data from such pilot-scalemicrobiome studies. The raw sequence files
(in .sra or .fastq format) were retrieved from the NCBI Sequence Read
Archive and European Nucleotide Archive databases for further
analysis.

Stool metagenome sample exclusion criteria
To minimize potential bias and preserve data integrity, we applied
stringent criteria to the stool shotgun metagenome samples for
inclusion in our study. Specifically, we excluded samples sequenced
using non-Illumina platforms, such as 454 GS FLX Titanium, Ion

Torrent PGM, Ion Torrent Proton, and BGISEQ-500, to ensure con-
sistency in sequencing technology. In terms of data quality, we
excluded samples with low read counts (below 1million reads) prior to
quality control filtration. Additionally, our analysis did not include
samples from studies with a primary focus on the virome or those
where stool samples underwent virus-like particle purification.

Furthering our strict sample control standards, we also excluded
disease control samples that were not specifically tied to a clinical
diagnosis in the originating study. Individuals who were not clini-
callydiagnosedwith a specificdiseasebut exhibited certain anomalous
conditions were also excluded. These conditions comprised: (i) a Body
Mass Index (BMI) suggestive of being underweight (BMI < 18.5), over-
weight (BMI ≥ 25 and <30), or obese (BMI ≥ 30) were not classified as
a non-healthy phenotype; (ii) declared heavy drug use (including
alcohol and recreational drugs); (iii) age exceeding 100 years; and (iv)
individuals initially healthy at baseline, but later reported to develop a
disease condition during a longitudinal study. Additionally, samples
from newborn, infant, and child gut microbiome studies were exclu-
ded since the primary focus was on adult human gut microbiomes.
Lastly, we excluded non-healthy individuals with early-stage diseases
(e.g., impaired glucose tolerance, hypertension, colorectal adenoma),
rare or genetically-linked disorders (e.g., Behcet’s disease, schizo-
phrenia), and non-colon cancers (including pancreatic, non-small cell
lung, and breast cancer). These exclusions were applied to ensure a
uniform and representative dataset for training GMWI2.

Quality control of sequenced reads
Potential human contamination was filtered out by removing reads
that aligned to the human genome (reference genome GRCh38/hg38)
using Bowtie246 v2.4.4 with default parameters. Along with Illumina
universal adapter sequences, probable adapter sequences were iden-
tified by extracting overrepresented sequences from each metagen-
ome sample using FastQC47 v0.11.8. Adapter sequence clipping and
quality filtration were performed using Trimmomatic48 v0.39. Specifi-
cally, Trimmomatic’s “ILLUMINACLIP” step was used, using a max-
imum seed mismatch count of 2, palindrome clip threshold of 30,
simple clip threshold of 10, and minimum adapter length of 2 bp.
Additionally, leading and trailing low-quality bases (Phred quality
score < 3) of each readwere removed, and trimmed reads shorter than
60bp in nucleotide length were discarded.

Taxonomic profiling
After performing quality filtration on all rawmetagenomes, taxonomic
profiling was carried out using the MetaPhlAn316 v3.0.13 phylogenetic
clade identification pipeline using default parameters. Briefly,
MetaPhlAn3 classifies metagenomic reads to taxonomies based on a
database (mpa_v30_CHOCOPhlAn_201901) of clade-specific marker
genes. Once taxonomic features (or clades) of unknown/unclassified
identity were removed, the remaining clades that could be detected in
at least one metagenome sample in the pooled dataset were con-
sidered for further analysis.

After taxonomic profiling, the following metagenomes were dis-
carded from our analysis: (i) samples composed of >90% unmapped
reads; (ii) samples with a relatively high proportion (>25%) of unknown
taxa; and (iii) samples lacking sufficient taxonomic diversity (<100
identified taxa). These samples were removed to maintain the quality
and reliability of the training data. Finally, after applying all exclusion
criteria, studies with fewer than 20 remaining samples were removed.

Generating presence/absence taxonomic profiles
To mitigate concerns related to the compositional nature of micro-
biome data49, batch effects, and to simplify the interpretation of the
GMWI2 classification model, we transformed the taxa relative abun-
dances from MetaPhlAn3 into a binary presence/absence profile for
eachmetagenome sample. Specifically, a taxon was deemed “present”

Article https://doi.org/10.1038/s41467-024-51651-9

Nature Communications |         (2024) 15:7447 11

www.nature.com/naturecommunications


in a given sample if its relative abundance in a sample was equal to or
greater than 0.00001 (or 0.001%), and considered absent otherwise.
Consequently, each sample was represented as a binary vector.

PCA and PERMANOVA analysis on taxonomic profiles
Principal component analysis (PCA) was conducted on the presence/
absence taxonomic profiles using the “prcomp” function in R. Addi-
tionally, Bray-Curtis distance matrices were generated based on the
relative abundances of microbial taxa (ranging from phylum to spe-
cies) in the stool metagenomes. This was done using the “vegan”
package v2.6.4 in R. We then carried out permutational multivariate
analysis of variance (PERMANOVA) on the distance matrix using the
“adonis2” function. To evaluate the influence of the subjects’ health
status on the total variance in gut microbial community composition,
we calculated the P-value for the test statistic (pseudo-F) based on 999
permutations.

Estimating disease likelihood using Lasso-penalized logistic
regression
A Lasso-penalized logistic regression model (Python library “scikit-
learn” v1.0.2) was trained on the binary presence/absence taxonomic
profiles of the entire pooled dataset of 8069 metagenomes to predict
disease presence. The L1 (Lasso) penalty was utilized with the LIB-
LINEAR solver50. The random state was set to 42, and the class weight
was set to “balanced” in order to account for the unbalanced class
proportions in our pooled dataset. Hyperparameter tuning—specifi-
cally the selection of the regularization parameter C—was achieved
through nested cross-validation that implements the inter-study vali-
dation (ISV) framework. Herein, we evaluated various candidates and
selected the value that yielded the optimal classification performance
in ISV (Supplementary Table 9; see table footnote for our nested cross-
validation protocol). C =0.03 consistently emerged as the optimal
hyperparameter within each outer-loop training fold and was thus
selected for the final GMWI2 model.

Let xi be a binary vector encoding the presence or absence of n
taxa in the ith labeled sample:

xi = x1
i , x

2
i , � � � , xn

i

� � ð1Þ

where xj
i is 1 if taxa j is present in sample i and 0 otherwise. Addi-

tionally, n = 3200 is the number of taxonomic features (or clades) in
the ith sample (a total of 3200 taxonomic features were observed at
least once in the pooled metagenome dataset).

Let yi represent the health status (1 for healthy, 0 for non-healthy)
of sample i. The subsequent log-loss optimization objective function is
solved using L1 regularization and class proportion weights as follows:

θ* = argmin
θ2Rn

C
Xm
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where θ* refers to the learned coefficient vector, C is the aforemen-
tioned inverse regularization strength parameter,m = 8069 represents
the total number of samples in the pooled metagenome dataset, α is
the classproportionweight term, andhθðxiÞ is the hypothesis function:

hθ xi
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= P yi = 1jxi,θ
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where σ is the sigmoid function. The class proportion term α accounts
for the relatively unbalanced class proportions in the pooled dataset:

α yi
� �

=
m

2
Pm

j = 1 yi = yj
h i ð4Þ

Using GMWI2 as a stool metagenome-based health status
classifier
We calculated GMWI2 scores for all 8069 stool metagenomes in the
pooled dataset, as well as samples from the four gut microbiome case
studies. The taxonomic profile of a metagenome was represented as a
vector xtest, with binary values that encoded the presence or absence
of microbial taxa. The computation employed the predicted log odds
(logit) using the previously learned coefficient vector θ*:

GMWI2 xtest

� �
= θ*
� �T

xtest ð5Þ

For classification purposes, a predetermined magnitude cutoff
parameter c was utilized (c= 0 in case of having no cutoff or defer
option). Finally, GMWI2 was computed on a metagenome xtest while
applying the following criteria:

classify xtest

� �
=

non-healthy GMWI2 xtest

� �
<� c

defer �c≤GMWI2 xtest

� �
≤ c

healthy GMWI2 xtest

� �
> c

8
><

>:
ð6Þ

Of note, our current methodology does not inherently categorize
gut microbiome samples into a third option. GMWI2 yields a con-
tinuous score, where the sign (negative or positive) is indicative of
disease presence or absence, respectively; and higher magnitudes
imply greater confidence in the prediction. The “defer” (or “not
determined”) category is an optional feature, applicable when a user
decides to implement a non-zero GMWI2 magnitude cutoff c. Scores
falling below this user-defined cutoff (e.g., between –1.0 and +1.0) can
be classified as “defer.”

Evaluation of classification performance
Balanced accuracy, defined as the average of the proportions of cor-
rectly classified healthy and non-healthy samples, was used to evaluate
the performance of the GMWI2 classification model. This was done
across different cutoff parameters (c) using multiple validation tech-
niques: training on the entire dataset and then testing on the same
training set, 10-fold cross-validation (10-fold CV), and leave-one-out
cross-validation (LOOCV). In order to account for variability in 10-fold
cross-validation, the process was repeated 10 times with shuffled fold
partitions, and the results were averaged across all runs. Additionally,
inter-study validation (ISV) was conducted, in which a single study was
held out each time, the model was trained on the remaining studies,
and testingwas performedon the samples of the single-held-out study.
ISV allows for an assessment of classification performance across dif-
ferent studies.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Information regarding the stool metagenome samples (and their cor-
responding studies) used to train the GMWI2 classifier is available in
Supplementary Data 2. Rawmetagenomic reads are available using the
sequencing data accession IDs.

Code availability
A command-line tool for computing the GMWI2 score of a stool
metagenome from its corresponding raw .fastq sequence file can be
installed via Anaconda (https://anaconda.org/bioconda/GMWI2). The
source code for the tool, processed datasets (including the taxonomic
profiles of all metagenome samples analyzed in this study), and code
notebooks essential to reproduce all results presented in our study, as

Article https://doi.org/10.1038/s41467-024-51651-9

Nature Communications |         (2024) 15:7447 12

https://anaconda.org/bioconda/GMWI2
www.nature.com/naturecommunications


well as complete instructions for installation and usage, are freely
available online at https://github.com/danielchang2002/GMWI2.
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