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ABSTRACT Biosynthetic gene clusters (BGCs) in microbial genomes encode bioactive
secondary metabolites (SMs), which can play important roles in microbe-microbe and
host-microbe interactions. Given the biological significance of SMs and the current pro-
found interest in the metabolic functions of microbiomes, the unbiased identification of
BGCs from high-throughput metagenomic data could offer novel insights into the com-
plex chemical ecology of microbial communities. Currently available tools for predicting
BGCs from shotgun metagenomes have several limitations, including the need for com-
putationally demanding read assembly, predicting a narrow breadth of BGC classes, and
not providing the SM product. To overcome these limitations, we developed taxonomy-
guided identification of biosynthetic gene clusters (TaxiBGC), a command-line tool for
predicting experimentally characterized BGCs (and inferring their known SMs) in metage-
nomes by first pinpointing the microbial species likely to harbor them. We benchmarked
TaxiBGC on various simulated metagenomes, showing that our taxonomy-guided
approach could predict BGCs with much-improved performance (mean F1 score, 0.56;
mean PPV score, 0.80) compared with directly identifying BGCs by mapping sequencing
reads onto the BGC genes (mean F1 score, 0.49; mean PPV score, 0.41). Next, by applying
TaxiBGC on 2,650 metagenomes from the Human Microbiome Project and various case-
control gut microbiome studies, we were able to associate BGCs (and their SMs) with dif-
ferent human body sites and with multiple diseases, including Crohn’s disease and liver
cirrhosis. In all, TaxiBGC provides an in silico platform to predict experimentally character-
ized BGCs and their SM production potential in metagenomic data while demonstrating
important advantages over existing techniques.

IMPORTANCE Currently available bioinformatics tools to identify BGCs from metage-
nomic sequencing data are limited in their predictive capability or ease of use to
even computationally oriented researchers. We present an automated computational
pipeline called TaxiBGC, which predicts experimentally characterized BGCs (and infers
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their known SMs) in shotgun metagenomes by first considering the microbial species
source. Through rigorous benchmarking techniques on simulated metagenomes, we
show that TaxiBGC provides a significant advantage over existing methods. When
demonstrating TaxiBGC on thousands of human microbiome samples, we associate
BGCs encoding bacteriocins with different human body sites and diseases, thereby
elucidating a possible novel role of this antibiotic class in maintaining the stability of
microbial ecosystems throughout the human body. Furthermore, we report for the
first time gut microbial BGC associations shared among multiple pathologies.
Ultimately, we expect our tool to facilitate future investigations into the chemical
ecology of microbial communities across diverse niches and pathologies.

KEYWORDS biosynthetic gene cluster, natural product, secondary metabolite,
metagenomics, microbiome, biomarkers, bacteriocin

Microbial secondary metabolites (SMs) (also called natural products) are a group of
low-molecular-weight, structurally diverse, and bioactive chemical compounds

(1–3). Although not essential for the growth, development, and reproduction of micro-
organisms, these compounds—which include bacterial and fungal cell-to-cell signaling
molecules, pigments, bacteriocins, and siderophores—are known to primarily mediate
key interactions within microbial ecosystems (4–7). Interestingly, these microbial SMs
have recently been found to substantially regulate many aspects of human health and
disease (8–12). Furthermore, microbial SMs are a significant source of antibiotics, anti-
fungals, anticancer agents, immunosuppressants, and other pharmaceutical drugs
(13–18). For example, alkaloids were found to have cytotoxic activity against human can-
cer cell lines (13) and to inhibit biofilm formation of methicillin-resistant Staphylococcus
aureus (MRSA) and vancomycin-resistant Enterococci (VRE) (19).

The genes mainly responsible for synthesizing, modifying, and exporting SMs in microbes
are often found in biosynthetic gene clusters (BGCs). In brief, BGCs are physically clustered
groups of genes in a microbial genome that encode a biosynthetic pathway for producing
an SM and its chemical variants (20, 21). With the advent of large-scale genomic studies and
the ensuing big data revolution in natural products research (22), researchers have been able
to apply computational genome mining to discover novel microbial BGCs and SMs (1, 10, 20,
23), including those from human microbiomes (16, 24). Hence, bioinformatics methods hold
strong promise for detecting BGCs and inferring their SM products.

Early computational tools to detect BGCs from microbial genomes (e.g., antiSMASH
[25], CLUSEAN [26], and PRISM [27]) use heuristic, rule-based algorithms based on the com-
positional similarity of gene/protein domains to annotated reference BGCs. Other tools
that utilize machine learning models have lately emerged, demonstrating a greater ability
to discover novel BGCs. One such widely used method is ClusterFinder (21), which employs
hidden Markov models for BGC detection. Additionally, DeepBGC (28) implements recur-
rent neural networks for BGC identification. Moreover, Navarro-Muñoz et al. (29) have pro-
vided an integrated computational workflow consisting of two software tools (BiG-SCAPE
and CORASON) for identifying novel gene cluster families and their phylogenetic relation-
ships from microbial genomes. Furthermore, the primary specialized metabolic gene clus-
ters (MGCs) of anaerobic bacteria were studied extensively using gutSMASH (30); this Web
server determines the metabolic potential of anaerobic bacteria by predicting both known
and putative MGCs using the same Pfam domain detection rules used by antiSMASH.
Notably, gutSMASH is specifically designed to identify MGCs from the gut microbiome.
Lastly, Pascal Andreu et al. (31) have recently introduced BiG-MAP, an automated com-
mand-line tool for profiling the abundance and expression of gene clusters in metage-
nomic and metatranscriptomic samples, respectively.

Approaches to predict BGCs have expanded beyond assembled or complete genomes
to enable BGC prediction from culture-independent microbial communities using shotgun
metagenomic sequencing. One such method is BiosyntheticSPAdes (32), which utilizes as-
sembly graphs to detect clusters encoding for nonribosomal peptide synthetases (NRPSs)
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and polyketide synthases (PKSs) from genomic and metagenomics data sets. In addition,
MetaBGC (24) demonstrated the characterization of BGCs directly from metagenomic
reads. This method first detects BGC reads from shotgun metagenome sequences based
on sequence-scoring models; afterward, the identified reads are binned for targeted as-
sembly to reconstruct novel BGCs.

Despite the variety of approaches to detect BGCs from microbial genomes and metage-
nomes, currently available tools have several shortcomings. Approaches such as antiSMASH
(25), CLUSEAN (26), and PRISM (27) are designed to predict BGCs of known pathway classes
from only individual microbial genomes. Machine learning-based methods can predict
unknown BGCs, but these methods can generate more false-positive predictions than rule-
based approaches (33). Moreover, these rule-based and machine learning-based approaches
require assembled genome (or metagenome) sequences to detect BGCs, limiting the scal-
ability of their application toward metagenomic data sets. Among BGC detection strategies
for metagenomes, BiosyntheticSPAdes is limited by the requirement of read assembly
before BGC prediction and thus requires considerable computational time and memory con-
sumption. MetaBGC, which is an assembly independent method, can be used directly on
metagenomic reads for BGC prediction; however, as mentioned in its original publication
(24), the requirement of laborious parameter optimization and the unavailability of prebuilt
models for a BGC of interest limit the utility of this tool for a wide range of metagenomic
data sets. Furthermore, neither of these two metagenome-based BGC detection methods
pinpoint the specific microbes that harbor the predicted BGC genes, leaving researchers
uncertain as to where the BGCs could be coming from. Clearly, there is a need to improve
current computational tools to enable accurate, rapid, and unbiased predictions of BGCs—
and their corresponding SMs—from shotgun metagenomes of microbial communities.

Realizing the limitations mentioned above, we set out to develop a method that accu-
rately and rapidly detects known BGCs from real-world, complex microbiomes. Herein, we
introduce taxonomy-guided identification of biosynthetic gene clusters (TaxiBGC), an easy-
to-use, command-line tool that identifies experimentally characterized BGCs from shotgun
metagenomic data and infers their known SM products. TaxiBGC does not require genome
assembly and can be applied to any metagenome. Importantly, our novel approach ena-
bles the prediction of experimentally characterized BGCs by first considering the microbial
species from which they are derived, thereby allowing the user to trace the predicted and
likely taxonomic origins of BGCs.

RESULTS
TaxiBGC for profiling experimentally characterized biosynthetic gene clusters

in metagenomes. TaxiBGC (Taxonomy-guided Identification of Biosynthetic Gene
Clusters) is a computational strategy for predicting experimentally characterized BGCs
and their annotated SMs in shotgun metagenomic sequencing data. The TaxiBGC pipe-
line consists of three major steps (Fig. 1A). The first step of the TaxiBGC pipeline per-
forms species-level, taxonomic profiling on the metagenome using MetaPhlAn3 (34).
The second step performs the first-pass prediction of BGCs through querying these
species (identified in the first step) in the TaxiBGC reference database (Fig. 1B)—a pre-
defined collection of 390 unique species with their experimentally characterized BGCs
and known SMs (Table 1; see Table S1 in the supplemental material). The last step of
the TaxiBGC pipeline performs in silico confirmation of the predicted BGCs (from the sec-
ond step) based on read mapping (i.e., alignment) using BBMap (35). Here, mapping of
shotgun sequencing reads onto BGC genes is conducted with a predetermined pair of
minimum BGC gene presence and BGC coverage thresholds. Finally, the SMs correspond-
ing to the confirmed BGCs are retrieved from the TaxiBGC reference database. TaxiBGC is
completely open access for anyone to apply to their own metagenomic data set (see
“Data Availability” for links to the TaxiBGC GitHub repository and conda installation).

In our study, the presence of a BGC gene was determined based on the fulfillment
of a minimum percentage length of that gene mapped onto by metagenomic reads;
and the coverage of a BGC was defined as the proportion of its total number of
genes that were found to be present in the metagenome. We determined a set of
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optimal BGC gene presence and BGC coverage thresholds for the TaxiBGC pipeline
based on their overall predictive performance on 125 simulated metagenomes of
mock microbial communities (Fig. 1C). These simulated metagenomes were con-
structed using 25 unique sets of various microbial community sizes and library sizes
(Materials and Methods). More specifically, analogous to the steps described in
Fig. 1A, we predicted BGCs in simulated metagenomes accordingly, as follows: (i)
species-level taxonomic profiling, (ii) initial prediction of experimentally character-
ized BGCs, and (iii) in silico confirmation of BGC predictions wherein BGC genes were
searched for in the metagenomes (via read mapping) using a range of BGC gene
presence and BGC coverage thresholds. We obtained prediction accuracy (F1 scores)
by comparing the predicted BGCs with the actual BGCs comprising the simulated
metagenomes. The pair of thresholds yielding the highest mean F1 score after testing

FIG 1 Schematic overview of the TaxiBGC pipeline. (A) The prediction of BGCs and their corresponding SMs from a microbiome (i.e., metagenome) sample
can be summarized in three main steps: first, species-level taxonomic profiling is performed using MetaPhlAn3; second, all identified species are queried in
the TaxiBGC reference database (see B) as the first-pass prediction of which experimentally characterized BGCs may be present in the sample; and third, as
an in silico confirmation of the predicted BGCs, metagenomic reads are mapped (aligned) onto those BGCs using BBMap with a set of predetermined
minimum BGC gene presence and BGC coverage thresholds (see C). For the BGCs whose presence is confirmed, their corresponding SM products are
retrieved from the TaxiBGC reference database. (B) The TaxiBGC reference database provides annotated information on experimentally characterized BGCs
and their corresponding SMs. To construct the TaxiBGC reference database, BGC and SM information was retrieved from the MIBiG database (as of January
2022). The TaxiBGC reference database encompasses 390 BGC-harboring microbial species, 953 experimentally characterized BGCs, and 1,154 SMs. (C) The
BGC gene presence and BGC coverage thresholds of TaxiBGC were determined based on prediction accuracies on simulated metagenomes of mock
microbial communities. Simulated metagenomes were created from 25 unique sets of various microbial community sizes (39 to 97 unique species) at 5
different library sizes (5 million, 10 million, 20 million, 40 million, and 80 million paired-end reads) (see Materials and Methods). Afterward, as described in
A, BGCs were predicted in all 125 simulated metagenomes to find the optimal pair of thresholds for the TaxiBGC pipeline. Here, the BGC gene presence is
defined as the percentage length of a BGC gene covered by metagenomic reads; and BGC coverage is defined as the proportion of the total number of
genes of BGC that are mapped onto by metagenomic reads. Prediction accuracy in the form of F1 scores can be obtained by comparing the predicted and
actual BGCs comprising the simulated metagenomes of known compositions. A pair of “BGC gene presence: 5%” and “BGC coverage: 10%” thresholds
resulted in the highest mean F1 score across a total of 125 simulated metagenomes and were thus selected as the optimal (default) thresholds used in A.
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on all 125 simulated metagenomes was selected as the optimal minimum BGC gene
presence and BGC coverage cutoffs for TaxiBGC.

Species, BGCs, and SMs of the TaxiBGC reference database. The TaxiBGC refer-
ence database essentially provides information linking experimentally characterized BGCs
and their corresponding SMs with their source organism (microbial species and/or strains).
This database, which is relied on by the TaxiBGC pipeline during BGC prediction (Fig. 1A), is
predefined and not assembled anew for each metagenome sample. For the construction
of this database (Fig. 1B), we obtained annotated information regarding BGCs, SMs, and
their respective source organisms from the MIBiG database (as of January 2022) (36). Since
the first step of the TaxiBGC pipeline relies on MetaPhlAn3 for species-level taxonomic
profiling, the TaxiBGC reference database takes into consideration only the 390 microbial
species in MIBiG (along with their annotated BGC and SM information) found in common
with those in the MetaPhlAn3 gene marker database (Fig. 2A).

FIG 2 Relationships among microbial species, BGCs, and SMs of the TaxiBGC reference database. The TaxiBGC reference database
links 390 microbial species to their 953 BGCs, which encode for 1,154 unique SMs. (A) A total of 1,021 BGC-harboring species were
obtained from the MIBiG database (as of January 2022). Among these species, 390 were common with those in the MetaPhlAn3 gene
marker database (as of January 2022). (B) BGC-harboring microbial species rank ordered by their number of BGCs. (C) Number of
BGCs with a given gene count. (D) Number of BGCs in each BGC class. Of note, a BGC can belong to multiple classes (Table S1). (E)
BGCs rank ordered by how many SMs they produce.
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In all, the TaxiBGC reference database encompasses 390 unique BGC-harboring mi-
crobial species, 953 unique experimentally characterized BGCs, and 1,169 total (1,154
unique) SMs. Of note, a BGC can be derived from multiple species, a BGC can encode
multiple SMs, and more than one BGC can encode for the same SM. BGCs encoding
nonribosomal peptides (NRPs) are the most prevalent among the 390 species (165 of
390 species, 42.3%); followed by polyketides (163 of 390 species, 41.8%); ribosomally
synthesized and posttranslationally modified peptides (RiPPs) (117 of 390 species,
30.0%); others, i.e., not part of the six main categories provided in the MIBiG database
and therefore collectively grouped into a single class (80 of 390 species, 20.5%); sac-
charides (74 of 390 species, 19.0%); terpenes (32 of 390 species, 8.2%); and alkaloids
(12 of 390 species, 3.1%) (we followed the MIBiG standard notations for the major SM
structure-based classes). BGCs, along with their classes/subclasses, and the taxa from
which they are derived are described in detail in Table 1 and Table S1.

In the TaxiBGC reference database, the number of BGCs a species can harbor varies
widely, ranging from 1 to as many as 21 (Escherichia coli), 22 (Aspergillus nidulans), or
23 (Streptomyces griseus); among all species, 217 (55.6% of 390) harbor only one BGC
(Fig. 2B). The number of genes in a BGC also varies widely, ranging from a single gene
to 164 genes (BGC0001555 encoding Colicin V); by and large, however, most of the
953 BGCs have less than 25 biosynthetic genes (Fig. 2C; see Table S2 in the supplemen-
tal material). Among the 953 BGCs, polyketides are the most abundant (338 of 953,
35.5%), followed by NRPs (297 of 953, 31.2%), RiPPs (183 of 953, 19.2%), saccharides
(125 of 953, 13.1%), other (110 of 953, 11.5%), terpenes (46 of 953, 4.8%), and alkaloids
(15 of 953, 1.6%) (Fig. 2D). Although both BGC0001782 and BGC000986 are known to
encode a total of 13 different SMs (highest SM production potential among all 953
BGCs), the majority of BGCs produce only 1 SM (796 of 953 or 83.5%) (Fig. 2E).

Factors determining the predictive performance of TaxiBGC. In TaxiBGC, identi-
fying whether a BGC is present (or not) in a metagenome is dependent mainly on the
following two criteria: regarding a BGC gene being present, metagenomic reads should
cover at least a minimum sequence length of that gene (i.e., BGC gene presence
threshold); and concerning a BGC being present, at least a minimum proportion of its
constituent genes should be present (i.e., BGC coverage threshold). On simulated
metagenomes, of which the BGC compositions are known, TaxiBGC prediction per-
formance was evaluated over a range of these thresholds (Materials and Methods).
More specifically, a total of 400 pairs of thresholds for BGC gene presence (5 to 100%
in increments of 5%) and BGC coverage (5 to 100% in increments of 5%) were tested
on a total of 125 simulated metagenomes. The predicted BGCs were then compared
with the actual BGCs to obtain prediction accuracy.

The best overall accuracy (mean F1 score, 0.56) for predicting BGCs in all simulated
metagenomes was achieved with a minimum BGC gene presence threshold of 5% and
a BGC coverage threshold of 10% (Fig. 3A). The F1 scores (the F1 score is the harmonic
mean of precision and recall) when calculated with these optimal thresholds (i.e., BGC
gene presence, 5%; BGC coverage, 10%) were found to be very close to the F1 scores
found when using the pair of thresholds most accurate for each metagenome, which
can vary sample to sample (Fig. 3B; see Table S3 in the supplemental material). This
finding indicates that the chosen BGC gene presence (5%) and BGC coverage (10%)
thresholds are suitable for the TaxiBGC pipeline for predicting BGCs in metagenomes.
Thus, these thresholds were set as default parameters in TaxiBGC, although the user is
given the option to change them in the command-line arguments based on the
desired precision or recall.

We next investigated whether TaxiBGC accuracy is influenced by inherent charac-
teristics of the simulated metagenomes, namely, mainly library size and relative abun-
dances of BGC-harboring species. First, we found that F1 scores for BGC prediction are
generally not dependent on library size, although we did observe a slight decrease in
F1 scores with relatively shallow 5 million (paired-end) reads compared to those with
40 million and 80 million reads (P = 0.047, Mann-Whitney U test) (Fig. 3C and Table S3).

Predicting Biosynthetic Gene Clusters in Metagenomes mSystems

Month YYYY Volume XX Issue XX 10.1128/msystems.00925-22 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 1

5 
N

ov
em

be
r 

20
22

 b
y 

24
.1

59
.2

04
.9

8.

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00925-22


Second, to see whether a higher relative abundance of BGC-harboring species is neces-
sary for more favorable predictive performance, we next investigated the relationship
between (geometric) mean relative abundance of those species in each sample and
the resulting prediction accuracy (Fig. 3D; see Table S4 in the supplemental material).
We found that F1 scores did not correlate with the mean relative abundances of BGC-
harboring species except in the case with 5 million reads. In summary, we recommend
using TaxiBGC on metagenomes of at least 10 million reads, in which case the relative
abundances of BGC-harboring species are not a significant contributing factor to pre-
diction accuracy.

Taxonomy-guided approach predicts BGCs more accurately than by directly
detecting BGC genes. As described above, the TaxiBGC pipeline predicts BGCs in metage-
nomes by first identifying the microbial species that harbor those BGCs. As an alternative to
this taxonomy-guided approach, we can also predict BGCs more directly by mapping meta-
genomic reads onto known BGC genes (which is the basis of existing state-of-the-art techni-
ques). To demonstrate the predictive capability of this direct BGC detection approach, we
again tested a range of BGC gene presence and BGC coverage thresholds (5 to 100% with
intervals of 5%) on the same 125 simulated metagenomes utilized above (Materials and
Methods). From all possible pairwise combinations of thresholds, we found that a minimum
BGC gene presence of 5% and a minimum BGC coverage of 90% led to the best mean F1
score of 0.49 (see Fig. S1 in the supplemental material). Next, the predictive performance of
the direct BGC detection approach was compared against that of TaxiBGC using the optimal
thresholds found for each respective method. Having tested on simulated metagenomes,
we found that TaxiBGC resulted in significantly higher F1 scores (P = 0.001, Mann-Whitney U
test) (Fig. 4A). Moreover, positive predictive values (PPVs) were considerably higher for
TaxiBGC (P , 2 � 10216, Mann-Whitney U test) (Fig. 4B), indicating that the taxonomy-
guided method generally results in fewer false-positive predictions than true positives.

FIG 3 TaxiBGC predictive performance is determined by the BGC gene presence and BGC coverage thresholds but not by metagenome library sizes or the
mean relative abundances of BGC-harboring species. (A) TaxiBGC was used to predict BGCs in all 125 simulated metagenomes of mock microbial
communities using 400 total pairwise combinations of BGC gene presence (5 to 100% in increments of 5%) and BGC coverage (5 to 100% in increments of
5%) thresholds. The best overall accuracy for predicting BGCs in simulated metagenomes was achieved with a minimum BGC gene presence and BGC
coverage of 5% and 10%, respectively (mean F1 score, 0.56). Therefore, these thresholds were set as defaults in TaxiBGC but can be modified by the user.
(B) F1 scores when using the overall optimal thresholds (blue line) resemble those when using the most accurate pair of thresholds for each metagenome
sample (red line). (C) F1 scores across various simulated metagenome library sizes when using TaxiBGC with the overall optimal thresholds. Prediction
accuracy of TaxiBGC was reasonably consistent in simulated metagenomes with 10 million or more paired-end reads. Only the F1 scores with a library size
of 5 million reads were statistically different from those with library sizes of 40 million and 80 million reads (P = 0.047, Mann-Whitney U test). Standard
box-and-whisker plots (e.g., center line, median; box limits, upper and lower quartiles; whiskers, 1.5� interquartile range; points, outliers) are used to show
distributions of F1 scores. (D) No significant correlation was found between F1 scores and (geometric) mean relative abundances of BGC-harboring species,
except for in the case with 5 million reads (Spearman’s r = 0.5, P = 0.01). Points in C and D correspond to individual simulated metagenomes. Scatter
plots in D are for simulated metagenomes of 5, 10, 20, 40, and 80 million reads (from left to right).
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BGCs for bacteriocins are prevalent in microbiomes throughout the human
body. To demonstrate the utility of TaxiBGC, we applied our novel approach on 1,217
metagenome samples from the Human Microbiome Project (HMP-1-I and HMP-1-II)
(37, 38). These metagenomes were sampled from the following five human body sites
collected from healthy human individuals: gut, i.e., stool (472 samples); nose, i.e., ante-
rior nares (116 samples); oral cavity (505 samples); skin, i.e., left/right retroauricular
crease (26 samples); and vagina (98 samples) (detailed information regarding the meta-
genome samples used from these studies is available in Table S5 in the supplemental
material; see Materials and Methods for sample exclusion criteria). We investigated
each body site to determine the proportion of its samples predicted to have a certain
BGC.

Across all five body sites, we identified a total of 24 unique BGCs present in at least one
sample (Fig. 5 and Table S5). Fourteen of them were found at significantly different propor-
tions in one or more body sites (P , 0.05, Fisher’s exact test). Most (20 of 24) BGCs were
exclusive to a particular body site (i.e., absent in metagenomes from other sites), while four
BGCs encoding for an exopolysaccharide (BGC0000764), nisin A (BGC0000535), nisin O
(BGC0001701), and ruminococcin A (BGC0000545) were found to be present in more than
one body site.

The 24 BGCs mentioned above span four main BGC classes, as follows: 20 are RiPPs,
one is an NRP, one is a saccharide, and two are from the ‘other’ class (Fig. 5). The 20 RiPPs,
which include gassericins, lacticins, mutacins, nisins, and ruminococcin A, all belong to the
bacteriocin group of antibiotics. Bacteriocins are a group of antimicrobial peptides that can
kill or inhibit growth in closely related or nonrelated bacterial strains (39). Interestingly,
there has recently been emerging evidence that supports bacteriocin-producing bacteria
as probiotic strains for benefiting human health (40). In our study, mutacin K8 was found
only in the oral microbiome (P , 0.001, Fisher’s exact test) but only for 40 (or 7.9%) of the
total 505 samples. Mutacin K8 is a major lantibiotic bacteriocin produced by Streptococcus
mutans, which is a key bacterium for the formation of dental plaques. It has been shown
to have potent activity against other streptococcal species in the oral cavity (41).
Additionally, a BGC for nisin O (BGC0001701) was found in both skin and gut microbiomes
(P , 0.001, Fisher’s exact test); this BGC was predicted in 35 (or 7.4%) and 1 (or 3.9%) of
the 472 gut microbiome and 26 skin microbiome samples, respectively. Lastly, BGCs for
gassericin E (BGC0001388), gassericin S (BGC0001601), and gassericin T (BGC000619) were

FIG 4 TaxiBGC outperforms the direct BGC detection method in predicting BGCs in simulated
metagenomes. Both F1 scores (A) and positive predictive values (PPVs) (B) for BGC predictions in
metagenomes were significantly higher when using TaxiBGC (mean F1 score, 0.56; mean PPV, 0.80) than
when directly detecting BGCs (mean F1 score, 0.49; mean PPV, 0.41). The BGC gene presence (BGC
coverage) thresholds for TaxiBGC and the direct BGC detection approach were set as 5% (10%) and 5%
(90%), respectively, as these cutoffs led to the best overall prediction accuracies for all 125 simulated
metagenomes. The center red line in the box-and-whisker plots denotes the median. Mann-Whitney U test
was used to test the level of significance.
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predicted exclusively in the vaginal microbiome (P , 0.001, Fisher’s exact test) for 19 (or
19.4%), 4 (or 4.1%), and 18 (or 18.4%) of the total 98 samples, respectively. A study showed
that gassericin E, which was produced by Lactobacillus gasseri EV1461 isolated from the va-
gina of a healthy woman, inhibited the growth of pathogens associated with bacterial vag-
inosis (42). In all, our findings may motivate future studies on how bacteriocins govern eco-
logical stability and dynamics within microbial niches of the human body.

Gut microbial BGCs associate with human diseases. We can also demonstrate
TaxiBGC in the context of translational research to find BGCs associated with clinical

FIG 5 Prevalence of BGCs in metagenomes sampled from five human body sites. TaxiBGC was used to profile metagenomic sequencing data from each
body site (provided by the Human Microbiome Project) to determine the proportion of samples in which a BGC was predicted. A total of 24 BGCs were
found to be present in at least one sample from all five body sites, of which 14 had significantly different proportions in one or more body sites (P , 0.05,
Fisher’s exact test). The color intensity in the heatmap reflects the proportion of samples (in a body site) wherein the corresponding BGC was found.
Twenty BGCs were predicted in only one body site. The following symbols indicate the level of significance for the two-sided Fisher’s exact test: n.s.,
P $ 0.05; **, 0.001 # P , 0.01; and ***, P , 0.001. RiPP subclasses are denoted as follows: $, for head-to-tail cyclized peptide; and #, lanthipeptide.
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phenotypes of interest. We applied TaxiBGC on 1,433 gut microbiome (i.e., stool metage-
nome) samples from the following nine published case-control studies: three Crohn’s dis-
ease (CD) studies (43–45), four colorectal cancer (CRC) studies (46–49), and one study each
for rheumatoid arthritis (RA) (50) and liver cirrhosis (51) (detailed information regarding the
metagenome samples used from these studies is available in Table S6 in the supplemental
material; see Materials and Methods for sample exclusion criteria). As shown in Fig. 6, a
total of 14 unique BGCs were found in gut microbiomes in significantly different

FIG 6 TaxiBGC identifies gut microbial BGCs associated with several human pathologies. TaxiBGC was used to identify BGCs in gut microbiome samples
from multiple case-control studies. In liver cirrhosis (LC), BGCs encoding 10 different SMs were found to be associated with either LC or control; in
rheumatoid arthritis (RA), 2 BGCs encoding nisin A and nisin Z were found in lower proportions in RA than in controls; and in Crohn’s disease (CD), BGCs
encoding 5 different SMs (gassericin E, gassericin S, gassericin T, lacticin Q, and ruminococcin A) were found more often in CD. In contrast, a BGC for nisin
O was found more frequently in controls; in colorectal cancer (CRC), three BGCs encoding lactocillin, nisin Z, and ruminococcin A were predicted in higher
proportions in CRC. In comparison, one BGC encoding nisin O was found more frequently in controls. Case-control studies are designated with the lead
author’s last name and publication year. Sample numbers are shown in parentheses next to their respective cohort. Significance for association was
calculated based on a two-sided Fisher’s exact test (P , 0.05).
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proportions between patients and control individuals (P, 0.05, Fisher’s exact test), thereby
associating BGCs and their SM production potential with human diseases.

In the study involving gut microbiomes from patients with LC and controls, ten
BGCs were significantly different in proportions between LC patients and controls
(Fig. 6), as follows: nine BGCs (encoding for an exopolysaccharide, gassericin A, gasseri-
cin E, gassericin S, gassericin T, mutacin I, mutacin III, macedocin, and ruminococcin A)
were found to be present in a significantly higher proportion of LC patients than that
in controls; on the other hand, only one BGC for nisin O was found more often in con-
trols than in LC patients. Additionally, TaxiBGC found two BGCs encoding for nisin A
and nisin Z less frequently in the gut microbiomes of patients with RA than in those of
controls (Fig. 6).

Six BGCs were identified in significantly different proportions between patients
with CD and controls (Fig. 6). Five BGCs encoding for gassericin E (in reference 43), gas-
sericin S (in reference 43), gassericin T (in reference 43 and 44), lacticin Q (in reference
44), and ruminococcin A (in reference 44) were found more frequently in CD patients
in separate individual studies. The one remaining BGC for nisin O (in reference 43 and
45) was predicted more often in controls; that these patterns for the nisin O-/gassericin
T-encoding BGCs were observed in two different studies may indicate that our findings
are robust.

Four BGCs were found to be associated with CRC (Fig. 6). Three gut microbial BGCs
were found in significantly higher proportions in CRC (compared with controls); these
BGCs encode lactocillin (in reference 48), nisin Z (in reference 46), and ruminococcin A
(in reference 46 and 49). Alternatively, as was observed for CD studies, a BGC for nisin
O was found in significantly higher proportions in controls than those in CRC patients
(in reference 47). Among these four BGCs associated with CRC, three encode for bacter-
iocins (nisin O, nisin Z, and ruminococcin A), whereas one encodes for lactocillin, which
is a thiopeptide antibiotic. Previously, BGCs for thiopeptides were found to be widely
distributed in genomes of microbial species inhabiting the human gut, oral cavity, and
vagina (16).

Interestingly, five of the disease-associated gut microbial BGCs mentioned above
were shared across multiple gastrointestinal diseases. For example, BGC0001701
encoding nisin O was found more often in controls than in LC, CD, and CRC (see pink
lines in Fig. 6). In contrast, in the same three diseases, BGC0000545 for ruminococcin A
was found in higher proportions in cases than those in controls (see blue lines in
Fig. 6). Lastly, three BGCs for gassericin E (BGC0001388; see green lines in Fig. 6), gas-
sericin S (BGC0001601; see gold lines in Fig. 6), and gassericin T (BGC0000619; see pur-
ple lines in Fig. 6) were found in significantly higher proportions in both CD and LC
patients than those in controls. Furthermore, all five of these BGCs encode bacterio-
cins. In summary, building upon previous findings of gut microbiome taxonomies or
genes shared among different human diseases (52–54), we report for the first time
experimentally characterized BGCs associated with the gut microbiome of multiple
pathologies.

DISCUSSION

Accurately predicting the biosynthetic potential of BGCs from microbiomes is cur-
rently one of the most important challenges in microbial natural product research.
Here, we present TaxiBGC, a computational pipeline for predicting experimentally char-
acterized, microbial BGCs with their known SMs in shotgun metagenomes. TaxiBGC
employs the following three main steps for predicting BGCs: (i) identification of BGC-
harboring species, (ii) initial prediction of BGCs based on the identified BGC-harboring
species, and (iii) in silico confirmation of the predicted BGCs by mapping metagenomic
reads onto the genes. We evaluated the prediction accuracy of TaxiBGC on simulated
metagenomes (of mock microbial communities) constructed using varied combina-
tions of species identities, species richness, and sequencing library sizes. Accordingly,
we showed that BGC prediction using our taxonomy-guided approach (mean F1 score,
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0.56; and mean PPV score, 0.80) was superior to directly mapping reads onto BGC
genes (mean F1 score, 0.49; and mean PPV score, 0.41). Next, to identify BGCs (and
thereby being able to estimate their corresponding SMs) associated with human health
and disease, we demonstrated our TaxiBGC pipeline on metagenomes sampled from
different body sites and on gut microbiomes collected from patients with liver cirrho-
sis, rheumatoid arthritis, Crohn’s disease, or colorectal cancer. Our results show that
human body sites harbor distinct microbial BGC signatures, which mostly encode bac-
teriocins. Furthermore, by characterizing the potential chemical milieu of the gut mi-
crobial environment for different diseases and their controls, our results provide a
starting point for discovering stool-borne SM biomarkers and therapeutic leads.

Several limitations of TaxiBGC should be noted when interpreting our results. First,
by design, BGC prediction by TaxiBGC relies on the successful identification of micro-
bial species from metagenomes. In the case where MetaPhlAn3 (or other taxonomy
profiling tools in future versions of TaxiBGC) cannot identify all the BGC-harboring spe-
cies, TaxiBGC would not be able to accurately predict the entire breadth of BGCs.
Second, predictions regarding the taxonomic origins of BGCs need to be interpreted
with caution. This call for caution is because, in the “mixed bag of genes” context of
metagenomes, gene elements of a particular BGC could originate from other BGCs and
multiple species. Nevertheless, TaxiBGC can spark new and exciting hypotheses regard-
ing the connections between microbiome BGCs and their source species, which can be
validated in future empirical studies. Third, although the taxonomy-guided step in our
approach can certainly reduce false-positive BGC predictions relative to true positives,
the trade-off is that we may miss BGCs that are present in the metagenomes, thereby
leading to type II errors (false negatives). Fourth, TaxiBGC provides only the chemical
family—but not the specific molecular structure—for a small number of SM products,
such as glycopeptidolipid and exopolysaccharide. This limitation is simply because
more detailed information is not yet available in MIBiG. Fifth, TaxiBGC is designed to
predict only known BGCs whose SMs have been verified by other research groups.
Therefore, its predictions do not extend to putative (unvalidated) BGCs that have yet
to be isolated and expressed in bacterial hosts. Finally, experimental verification of
whether the BGCs (and their SMs) reported here are indeed implicated in health out-
comes, e.g., either maintaining the structure of the so-called “healthy” gut microbiome
(53, 55, 56) or eliciting immunopathogenic effects, remains an essential step but is
beyond the scope of this computational study.

Despite the limitations mentioned above, TaxiBGC provides several advantages
over currently available tools for BGC identification. First, TaxiBGC employs an assem-
bly independent, read-based prediction method; this method solves a fundamental li-
mitation of current BGC prediction tools that assume each BGC is encoded within a sin-
gle contig in the genome or assembled metagenome, whereas in reality, genes of
BGCs can be dispersed throughout several contigs. Second, TaxiBGC can be used to as-
sociate BGC presence with species abundance, which can help pinpoint which BGCs
originate from which species under different phenotypic conditions. Third, TaxiBGC
can simultaneously identify several classes of experimentally characterized BGCs in a
metagenome sample. This comprehensive and unbiased detection is essential to
deepen our understanding of the diversity of known BGCs and their SMs in a micro-
biome. Fourth, no parameter selection or optimization is necessary before running
TaxiBGC. The only preinstalled software needed in TaxiBGC is MetaPhlAn3 for taxo-
nomic species identification and BBMap v38.90 (or higher) for mapping metagenomic
reads onto BGC genes.

In closing, we anticipate that TaxiBGC can facilitate the unbiased identification of
experimentally characterized BGCs and their annotated SMs from shotgun metage-
nomes. It is also worth noting that TaxiBGC is not limited to the use in human micro-
biomes but can easily be applied to solve questions in other types of microbiomes
(e.g., animal models, soil, seawater, and plants) for BGC identification. Additionally,
we envision that our novel pipeline can contribute to our ongoing efforts to
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computationally model the wide range of potential metabolite-driven interactions
within complex microbial communities (57–59). Finally, to support these efforts and
beyond, we plan to continuously expand and curate the current version of TaxiBGC
with data newly added to MIBiG, as well as with updates to taxonomic profiling
software.

MATERIALS ANDMETHODS
Constructing simulated metagenomes. Simulated metagenomes were constructed according to

the following steps. First, 25 metagenome samples were selected randomly from the Human
Microbiome Project (HMP) (37, 38). Second, the species composition of each sample was determined
using MetaPhlAn v3.0.13 (34). Third, mock microbial communities were made with BGC-harboring and
non-BGC-harboring species while preserving the original species richness and relative abundance quan-
tities found for each HMP metagenome (see Table S7 and Fig. S2 in the supplemental material). In other
words, the actual species in each HMP sample were replaced with BGC-harboring species (from MIBiG)
and non-BGC-harboring species (from NCBI GenBank) at random. This uneven distribution of species’
counts and abundances allows the generation of simulated metagenomes as close to real metagenomes
as possible. In all, 25 mock microbial communities, in which the unique species richness (i.e., count)
ranged from ;40 to ;100, were used to construct simulated metagenomes (see Table S8 in the supple-
mental material). Fourth, for each species in a mock microbial community, the genome corresponding
to its strain, or that of a randomly selected strain in case there were multiple strains for a particular spe-
cies, was downloaded from NCBI GenBank. Fifth, the collection of genome sequences for all species of a
mock community was converted into paired-end metagenomic reads of 100-bp read length using next-
generation sequencing simulator for metagenomics (NeSSM) (60). In NeSSM, the number of reads gener-
ated from each genome is commensurate with the known community composition (thereby considering
the names, total count, and relative abundances of the species) and the specified library size, resulting
in a simulated metagenome for a given mock community. By various sequencing library sizes, a total of
125 simulated metagenomes [(25 unique sets of microbial species) � (5 library sizes: 5 million, 10 mil-
lion, 20 million, 40 million, and 80 million paired-end reads)] were constructed.

Predicting BGCs in simulated metagenomes using TaxiBGC. First, species-level taxonomic profiling
was performed on each simulated metagenome using MetaPhlAn v3.0.13 (34) with default parameters. Next,
all identified species were queried in the TaxiBGC reference database for the first-pass prediction of BGCs
that might be present. Then, as an in silico confirmation of those predicted BGCs, genes of those BGCs were
searched for in the metagenomes using BBMap v38.90 (35) with minimum BGC gene presence (i.e., percent-
age length of a BGC gene covered by metagenomic reads) and BGC coverage (i.e., percentage of the total
number of genes present for a particular BGC) cutoffs. BGCs that passed these two criteria were considered
present in the given metagenome.

Predicting BGCs in simulated metagenomes through direct detection of BGC genes. The direct
BGC gene detection strategy was used to predict BGCs in a simulated metagenome without taxonomic
profiling. Accounting for all BGCs in the MIBiG database (1,905 BGCs as of January 2022) (Table S1), this
approach searches for BGC genes in simulated metagenomes using BBMap v38.90 with a pair of mini-
mum BGC gene presence and BGC coverage cutoffs. BGCs that passed these two criteria were consid-
ered present in the given metagenome.

F1 scores for evaluating TaxiBGC prediction accuracy. The F1 score, defined as the harmonic mean
of precision and recall, is calculated as follows:

F1 ¼ 2
1

precision
1

1
recall

where

precision ¼ TP
TP 1 FP

and

recall ¼ TP
TP 1 FN

Here, for a given metagenome, TP (true positives) is the number of BGCs that were correctly pre-
dicted to be present; FP (false positives) is the number of BGCs that were incorrectly predicted to be
present; and FN (false negatives) is the number of BGCs that were missed, i.e., incorrectly predicted to
be absent by TaxiBGC.

Exclusion criteria for metagenomic data sets used in TaxiBGC demonstration. Metagenome
samples from the following were excluded from the current study: (i) subjects undergoing dietary/medi-
cation interventions, (ii) metagenome samples with less than 5 million reads, (iii) metagenome samples
sequenced as single-end reads, and (iv) samples collected from patients with comorbidities. In the case
where multiple runs were available for a sample, only the sequencing run with the highest read count
(of at least 5 million reads) was included for analysis. If multiple samples were collected from the same
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individual across different time points, then only the sample collected at the first recorded time point
was considered. In all, the TaxiBGC pipeline was applied on 2,650 publicly available, human-derived
metagenomes from 11 independent published studies. Raw sequence files of all metagenomes were
downloaded from the NCBI Sequence Read Archive.

Data availability. TaxiBGC is an open-source command-line tool that is implemented in Python and
bash. To avoid dependency conflicts, TaxiBGC can be installed via Anaconda (https://anaconda.org/
danielchang2002/TaxiBGC). The source code, MIBiG BGC gene sequences, the TaxiBGC reference database,
and complete instructions for installation and usage are freely available online at https://github.com/
danielchang2002/TaxiBGC_2022.

SUPPLEMENTAL MATERIAL
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